Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.

نویسندگان

  • Colleen R Shields
  • Peter D Lukasiewicz
چکیده

The inhibitory surround signal in retinal ganglion cells is usually attributed to lateral horizontal cell signaling in the outer plexiform layer (OPL). However, recent evidence suggests that lateral inhibition at the inner plexiform layer (IPL) also contributes to the ganglion cell receptive field surround. Although amacrine cell input to ganglion cells mediates a component of this lateral inhibition, it is not known if presynaptic inhibition to bipolar cell terminals also contributes to surround signaling. We investigated the role of presynaptic inhibition by recording from bipolar cells in the salamander retinal slice. TTX reduced light-evoked GABAergic inhibitory postsynaptic currents (IPSCs) in bipolar cells, indicating that presynaptic pathways mediate lateral inhibition in the IPL. Photoreceptor and bipolar cell synaptic transmission were unaffected by TTX, indicating that its main effect was in the IPL. To rule out indirect actions of TTX, we bypassed lateral signaling in the outer retina by either electrically stimulating bipolar cells or by puffing kainate (KA) directly onto amacrine cell processes lateral to the recorded cell. In bipolar and ganglion cells, TTX suppressed laterally evoked IPSCs, demonstrating that both pre- and postsynaptic lateral signaling in the IPL depended on action potentials. By contrast, locally evoked IPSCs in both cell types were only weakly suppressed by TTX, indicating that local inhibition was not as dependent on action potentials. Our results show a TTX-sensitive lateral inhibitory input to bipolar cell terminals, which acts in concert with direct lateral inhibition to give rise to the GABAergic surround in ganglion cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Timing of Quantal Release from the Retinal Bipolar Terminal Is Regulated by a Feedback Circuit

In isolation, a presynaptic terminal generally releases quanta according to Poisson statistics, but in a circuit its release statistics might be shaped by synaptic interactions. We monitored quantal glutamate release from retinal bipolar cell terminals (which receive GABA-ergic feedback from amacrine cells) by recording spontaneous EPSCs (sEPSCs) in their postsynaptic amacrine and ganglion cell...

متن کامل

Properties of a Glutamatergic Synapse Controlling Information Output from Retinal Bipolar Cells

One general categorization of retinal ganglion cells is to segregate them into tonically or phasically responding neurons, each conveying discrete aspects of the visual scene. Although best identified in the output signals of the retina, this distinction is initiated at the first synapse: between photoreceptors and the dendrites of bipolar cells. In this study we found that the output synapses ...

متن کامل

GABA transporters regulate inhibition in the retina by limiting GABA(C) receptor activation.

Inhibition is mediated by two classes of ionotropic receptors in the retina, GABA(A) and GABA(C) receptors. We used the GABA transport blocker NO-711 to examine the role of GABA transporters in shaping synaptic responses mediated by these two receptors in the salamander retinal slice preparation. Focal applications (puffs) of GABA onto GABA(C) receptors on bipolar cells terminals or GABA(A) rec...

متن کامل

Activation of the tonic GABAC receptor current in retinal bipolar cell terminals by nonvesicular GABA release.

Within the second synaptic layer of the retina, bipolar cell (BC) output to ganglion cells is regulated by inhibitory input to BC axon terminals. GABA(A) receptors (GABA(A)Rs) mediate rapid synaptic currents in BC terminals, whereas GABA(C) receptors (GABA(C)Rs) mediate slow evoked currents and a tonic current, which is strongly regulated by GAT-1 GABA transporters. We have used voltage-clamp r...

متن کامل

Characterization of receptors for glutamate and GABA in retinal neurons.

Glutamate and gamma-aminobutyric acid (GABA) are major excitatory and inhibitory neurotransmitters in the vertebrate retina, "a genuine neural center" (Ramón y Cajal, 1964, Recollections of My Life, C.E. Horne (Translater) MIT Press, Cambridge, MA). Photoreceptors, generating visual signals, and bipolar cells, mediating signal transfer from photoreceptors to ganglion cells, both release glutama...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 5  شماره 

صفحات  -

تاریخ انتشار 2003